Multi-instance multi-label active learning
نویسندگان
چکیده
Multi-instance multi-label learning (MIML) has achieved success in various applications, especially those involving complicated learning objects. Along with the enhancing of expressive power, the cost of annotating a MIML example also increases significantly. In this paper, we propose a novel active learning approach to reduce the labeling cost of MIML. The approach actively query the most valuable information by exploiting diversity and uncertainty in both the input and output spaces. It designs a novel query strategy for MIML objects specifically and acquires more precise information from the oracle without additional cost. Based on the queried information, the MIML model is then effectively trained by simultaneously optimizing the relevance rank among instances and labels. Experiments on benchmark datasets demonstrate that the proposed approach achieves superior performance on various criteria.
منابع مشابه
Active Learning with Multi-Label SVM Classification
Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...
متن کاملMulti-Label Active Learning from Crowds
Multi-label active learning is a hot topic in reducing the label cost by optimally choosing the most valuable instance to query its label from an oracle. In this paper, we consider the poolbased multi-label active learning under the crowdsourcing setting, where during the active query process, instead of resorting to a high cost oracle for the ground-truth, multiple low cost imperfect annotator...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملLearnability of Multi - Instance Multi - Label Learning
Multi-Instance Multi-Label learning (MIML) is a new machine learning framework where one data object is described by multiple instances and associated with multiple class labels. During the past few years, many MIML algorithms have been developed and many applications have been described. However, there lacks theoretical exploration to the learnability of MIML. In this paper, through proving a ...
متن کاملMulti-Instance Multi-Label Learning with Application to Scene Classification
In this paper, we formalize multi-instance multi-label learning, where each training example is associated with not only multiple instances but also multiple class labels. Such a problem can occur in many real-world tasks, e.g. an image usually contains multiple patches each of which can be described by a feature vector, and the image can belong to multiple categories since its semantics can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017